Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
NeuroRegulation ; 9(3):135-146, 2020.
Article in English | EMBASE | ID: covidwho-2312482

ABSTRACT

Introduction: The incomplete effectiveness of interventions demands new ways to help people diagnosed with schizophrenia who experience auditory verbal hallucinations (SZ-AVH). We aimed to perform a feasibility study of low-resolution electromagnetic tomography analysis (LORETA) neurofeedback with people exhibiting treatment-resistant SZ-AVH. Method(s): We examined changes in resting-state quantitative electroencephalogram (qEEG) in four people with SZ-AVH (three male, one female) after LORETA Z-score neurofeedback training. Result(s): The study design had to be amended due to a national COVID-19 lockdown. Neurofeedback was well tolerated and no participants dropped out. Recruitment was the main feasibility issue. Barriers included a lack of knowledge of neurofeedback by patients and mental health teams, as well as the travel and time commitment involved. For the only patient who completed all 20 sessions, elevated frontal, central, and temporal theta absolute power measured at baseline normalized after treatment, but decreased temporal delta and an increase in coherence for all frequency bands were also found. Conclusion(s): Two key lessons were drawn for the feasibility of trials of EEG neurofeedback in this population. First, significant effort is needed to educate mental health professionals and patients about neurofeedback. Second, the equipment employed for neurofeedback training needs to be physically based at a site where patients routinely attend.Copyright © 2022. Amico et al.

2.
Front Hum Neurosci ; 16: 988021, 2022.
Article in English | MEDLINE | ID: covidwho-2065601

ABSTRACT

The COVID-19 pandemic has affected the entire world. The SARS-CoV-2 virus is wreaking havoc globally, leading to serious health problems and even death. The purpose of this study is to present the brainwave variability pattern using QEEG after exposure to COVID-19 and to introduce the subject of the Sudarshan Kriya Yoga (SKY)-based breathing technique. QEEG is one of the basic neurological examinations through which we can compare the changes in the nervous system after SARS-CoV-2 virus infection and observe the variation of brainwave frequencies with a breathing technique.

3.
Sensors (Basel) ; 22(17)2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2010251

ABSTRACT

Previous research and clinical reports have shown that some individuals after COVID-19 infection may demonstrate symptoms of so-called brain fog, manifested by cognitive impairment and disorganization in behavior. Meanwhile, in several other conditions, related to intellectual function, a specific pattern of changes in electric brain activity, as recorded by quantitative electroencephalography (QEEG) has been documented. We hypothesized, that in post-COVID brain fog, the subjective complaints may be accompanied by objective changes in the QEEG profile. In order to test this hypothesis, we have performed an exploratory study on the academic staff of our University with previous records of QEEG originating in the pre-COVID-19 era. Among them, 20 subjects who revealed neurological problems in the cognitive sphere (confirmed as covid fog/brain fog by a clinical specialist) after COVID-19 infection were identified. In those individuals, QEEG was performed. We observed, that opposite to baseline QEEG records, increased Theta and Alpha activity, as well as more intensive sensimotor rhythm (SMR) in C4 (right hemisphere) in relation to C3 (left hemisphere). Moreover, a visible increase in Beta 2 in relation to SMR in both hemispheres could be documented. Summarizing, we could demonstrate a clear change in QEEG activity patterns in individuals previously not affected by COVID-19 and now suffering from post-COVID-19 brain fog. These preliminary results warrant further interest in delineating their background. Here, both neuroinflammation and psychological stress, related to Sars-CoV2-infection may be considered. Based on our observation, the relevance of QEEG examination as a supportive tool for post-COVID clinical workup and for monitoring the treatment effects is also to be explored.


Subject(s)
COVID-19 , Brain , Electroencephalography , Humans , Mental Fatigue , RNA, Viral , SARS-CoV-2
4.
International Journal of Environmental Research and Public Health ; 19(9):5480, 2022.
Article in English | ProQuest Central | ID: covidwho-1837148

ABSTRACT

In 2021, over 100,000 people died prematurely from opioid overdoses. Neuropsychiatric and cognitive impairments are underreported comorbidities of reward dysregulation due to genetic antecedents and epigenetic insults. Recent genome-wide association studies involving millions of subjects revealed frequent comorbidity with substance use disorder (SUD) in a sizeable meta-analysis of depression. It found significant associations with the expression of NEGR1 in the hypothalamus and DRD2 in the nucleus accumbens, among others. However, despite the rise in SUD and neuropsychiatric illness, there are currently no standard objective brain assessments being performed on a routine basis. The rationale for encouraging a standard objective Brain Health Check (BHC) is to have extensive data available to treat clinical syndromes in psychiatric patients. The BHC would consist of a group of reliable, accurate, cost-effective, objective assessments involving the following domains: Memory, Attention, Neuropsychiatry, and Neurological Imaging. Utilizing primarily PUBMED, over 36 years of virtually all the computerized and written-based assessments of Memory, Attention, Psychiatric, and Neurological imaging were reviewed, and the following assessments are recommended for use in the BHC: Central Nervous System Vital Signs (Memory), Test of Variables of Attention (Attention), Millon Clinical Multiaxial Inventory III (Neuropsychiatric), and Quantitative Electroencephalogram/P300/Evoked Potential (Neurological Imaging). Finally, we suggest continuing research into incorporating a new standard BHC coupled with qEEG/P300/Evoked Potentials and genetically guided precision induction of “dopamine homeostasis” to diagnose and treat reward dysregulation to prevent the consequences of dopamine dysregulation from being epigenetically passed on to generations of our children.

5.
J Alzheimers Dis ; 86(1): 21-42, 2022.
Article in English | MEDLINE | ID: covidwho-1736733

ABSTRACT

The COVID-19 pandemic has accelerated neurological, mental health disorders, and neurocognitive issues. However, there is a lack of inexpensive and efficient brain evaluation and screening systems. As a result, a considerable fraction of patients with neurocognitive or psychobehavioral predicaments either do not get timely diagnosed or fail to receive personalized treatment plans. This is especially true in the elderly populations, wherein only 16% of seniors say they receive regular cognitive evaluations. Therefore, there is a great need for development of an optimized clinical brain screening workflow methodology like what is already in existence for prostate and breast exams. Such a methodology should be designed to facilitate objective early detection and cost-effective treatment of such disorders. In this paper we have reviewed the existing clinical protocols, recent technological advances and suggested reliable clinical workflows for brain screening. Such protocols range from questionnaires and smartphone apps to multi-modality brain mapping and advanced imaging where applicable. To that end, the Society for Brain Mapping and Therapeutics (SBMT) proposes the Brain, Spine and Mental Health Screening (NEUROSCREEN) as a multi-faceted approach. Beside other assessment tools, NEUROSCREEN employs smartphone guided cognitive assessments and quantitative electroencephalography (qEEG) as well as potential genetic testing for cognitive decline risk as inexpensive and effective screening tools to facilitate objective diagnosis, monitor disease progression, and guide personalized treatment interventions. Operationalizing NEUROSCREEN is expected to result in reduced healthcare costs and improving quality of life at national and later, global scales.


Subject(s)
COVID-19 , Pandemics , Aged , Brain/diagnostic imaging , Brain Mapping , Delivery of Health Care , Humans , Male , Quality of Life
6.
J Clin Med ; 10(6)2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1154429

ABSTRACT

INTRODUCTION AND PURPOSE: The SARS-CoV-2 virus is able to cause abnormalities in the functioning of the nervous system and induce neurological symptoms with the features of encephalopathy, disturbances of consciousness and concentration and a reduced ability to sense taste and smell as well as headaches. One of the methods of detecting these types of changes in COVID-19 patients is an electroencephalogram (EEG) test, which allows information to be obtained about the functioning of the brain as well as diagnosing diseases and predicting their consequences. The aim of the study was to review the latest research on changes in EEG in patients with COVID-19 as a basis for further quantitative electroencephalogram (QEEG) diagnostics and EEG neurofeedback training. Description of the state of knowledge: Based on the available scientific literature using the PubMed database from 2020 and early 2021 regarding changes in the EEG records in patients with COVID-19, 17 publications were included in the analysis. In patients who underwent an EEG test, changes in the frontal area were observed. A few patients were not found to be responsive to external stimuli. Additionally, a previously non-emerging, uncommon pattern in the form of continuous, slightly asymmetric, monomorphic, biphasic and slow delta waves occurred. CONCLUSION: The results of this analysis clearly indicate that the SARS-CoV-2 virus causes changes in the nervous system that can be manifested and detected in the EEG record. The small number of available articles, the small number of research groups and the lack of control groups suggest the need for further research regarding the short and long term neurological effects of the SARS-CoV-2 virus and the need for unquestionable confirmation that observed changes were caused by the virus per se and did not occur before. The presented studies described non-specific patterns appearing in encephalograms in patients with COVID-19. These observations are the basis for more accurate QEEG diagnostics and EEG neurofeedback training.

7.
Clin EEG Neurosci ; 52(1): 3-28, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-797208

ABSTRACT

INTRODUCTION: The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS: Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS: Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS: The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.


Subject(s)
COVID-19/virology , Consensus , Electroencephalography , SARS-CoV-2/pathogenicity , Brain/physiopathology , Brain Mapping/methods , COVID-19/physiopathology , Electroencephalography/adverse effects , Electroencephalography/methods , Humans , Mental Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL